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Abstract—Statistical analysis of genetic changes within cell
nuclei that are far from the primary tumor would help determine
whether such changes have occurred prior to tumor invasion. To
determine whether the gene amplification in cells is morpholog-
ically and/or genetically related to the primary tumor requires
quantitative evaluation of a large number of cell nuclei from
continuous meaningful structures such as milk-ducts, tumors,
etc., located relatively far from the primary tumor. To address
this issue, we have designed an integrated image analysis software
system for high-throughput segmentation of nuclei. Filters such
as Beltrami flow-based reaction-diffusion, directional diffusion,
etc., were used to pre-process the images resulting in a better
segmentation. The accurate shape of the segmented nucleus was
recovered using an iterative “shrink-wrap” operation. The study
of two cases of ductal carcinoma in situ in breast tissue supports
the biological observation regarding the existence of a preferential
intraductal invasion, and therefore a common origin, between the
primary tumor and the gene amplification in the cell-nuclei lining
the ductal structures in the breast.

Index Terms—Cell, coherence, diffusion, segmentation, tissue.

I. INTRODUCTION

THE quantitative study of large tissue blocks is essential in
understanding the spread of genetic heterogeneity and the

process of tumor invasion. For example, the ductal carcinoma
in situ (DCIS) of the breast, a malignant, pre-invasive form of
breast cancer, is characterized by an abnormal proliferation of
cancer cells through ductal structures that are meant to carry
milk. These abnormal cells can be detected by analyzing gene
amplification/deletion in the cell-nucleus [1], [2]. Determining
whether the gene amplification in intra-ductal tissue is related
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Fig. 1. (a) A 7.5 � 4.5 K image of a single slide obtained by montaging the
256� 256 pixel images captured by the microscope from scanning of the com-
plete tissue section. (b) A tiny part of the tissue image scaled to show distribution
of the cell nuclei.

to the primary tumor requires analysis of cell nuclei that forms
ducts and tumors in tissue blocks of the breast. An example
image of a single tissue section of the DCIS specimen is shown
in Fig. 1(a). In this image, consecutive images taken by the mi-
croscope were appropriately montaged to get a complete pic-
ture of the tissue section in one slide. The checker-board pattern
that appears due to optical issues was removed by subtracting
an image brightness pattern acquired over an empty area of the
slide. A tissue block consists of a stack of several such slides
where significant structures such as ducts and tumors are ap-
proximately registered. The spatial continuity of the structures
in different sections is semi-automatically marked and the cell
nuclei within these individual structures are analyzed for genetic
heterogeneity. Fig. 1(b) shows a small part of a single channel
of the multi-spectral tissue image. The algorithms for the recon-
struction of three-dimensional (3-D) tissue blocks from two-di-
mensional (2-D) images, spatial delineation of tumors and other
ductal structures, segmentation of nuclei, and quantifying the
genetic makeup of cell nuclei in wide regions of interest together
constitutes a high-throughput tissue image analysis system.

In spite of a number of techniques reported for tissue image
analysis [3]–[5], segmentation of the cell nuclei in a compact
tissue structure is still an open problem. The most recent
survey of automatic segmentation of digital micrographs by
Nattkemper [6] provides a review of several recently published
articles on segmentation of micrographs. Though an exhaustive
review is out of the scope of this paper, we briefly review some
of the important papers in the filed of segmentation of cells
and tissues in 2-D micrographs. Gill et al. [7] in their review
of image analysis and morphometry in breast cancer have
concluded that the absence of any reliable nuclear segmentation
technique is the main reason for the lack of automation in tissue
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image analysis. One of the early papers on the problem of seg-
menting cell nuclei in compact tissue images is that of Garbay
[8]. They propose a region-growing technique that is con-
strained by shape and size similarities of cell nuclei. In dense
tissue images of cancerous specimens, a more robust method
is required. In high throughput tissue image analysis, the
above method requires an automatic initial seed selection and
becomes slow due to the requirement of continuous updating
of similarity measures. The same issues limit the semi-automa-
tion method proposed by Wu and Barba [9], Sarti et al. [10],
etc. Some of the thresholding based methods reported in the
literature are Ganster et al. [11], Green et al. [12], Wu et al.
[13]. Schnorrenberg et al. [14] proposed a soft-thresholding of
a pre-processed breast cancer tissue image for cell counting.
Thresholding methods are generally unreliable due to the
non-uniform intensity distribution in fluorescent microscopy
images. It is common knowledge that in many cases, multi-level
thresholding fails to separate touching cells. Nedzeved et al.
[15] and Schupp et al. [16] proposed morphological filters for
cell-nuclei segmentation in tissue images. Generally, several
morphological filters were used in various project specific com-
binations to achieve segmentation. When morphological filters
are used, the shape of the segmented object tends to change
in accordance with the shape of the structuring elements used
for filtering. Wu et al. [17] propose a parametric model-fitting
algorithm for cell segmentation. In this method, they assume
objects are convex and hence a shape model can be used for
segmentation. The result shown in [17] is on a tissue image
with only two cell nuclei. The composition of the algorithm is
also very complicated when overlapped structure are present
in the image. Nattkemper et al. [18], Sjostrom et al. [19]
have suggested a neural network based segmentation method
for high-throughput analysis of tissue sections. The method
is based on training a neural-classifier over a large feature
vector calculated from training-set and then use combination
of basic morphological filtering and competitive layer model
based neural classification to mark the cell contours. They have
reported a success rate of 98% in classifying lymphocytes.
Sjostrom et al. [19] have argued that the neural network method
as an alternative to NIH image software. The efficacy of both
neural network based methods were not explored in detail e.g.,
when there is a change in the quality of the micrographs or the
image acquisition settings or the change in tissue specimen.
Yang and Parvin [20] have used a quadratic shape model whose
parameters can be relaxed for the segmentation of nonstan-
dard shapes. The reliability of this method was not proven on
practical quality images obtained by non-confocal methods.
Moreover, the preprocessing is tuned to particular type of noise
found in specially stained confocal images making the method
task-specific in nature. Zimmer et al. [21], Garrido and Blanca
[22], Fok et al.[23], and Ray et al. [24] have used active models
for the segmentation of cell nuclei. Considering the number of
nuclei to be segmented, initializing the active contour models
would pose a significant problem. Active models are prone to
noise and other artifacts present in the tissue image.

This paper takes the approach of integrating several pre-pro-
cessing filters to strengthen the edge or boundary features of
cell nuclei for facilitating subsequent segmentation by a water-

shed based region-growing approach. Accuracy of the segmen-
tation is improved by a novel post-processing operation called
“shrink-wrapping”. Some encouraging results are shown.

II. MATERIAL AND METHODS

Large breast cancer tissue blocks were physically sectioned
into 5- m-thick sections. Alternate sections were stained with
Hematoxylin and Eosin (H&E) and a combination of nuclear
counter-stain (Texas RED), fluorescence in situ hybridization
targeting gene Her2 (marked using Orange Cy3 dyes) and cen-
tromere specific chromosomal locations (stained using fluores-
cein isothyocyanate, FITC). Low magnification (2.5 X) images
of the H&E stained tissue sections and fluorescent sections were
first acquired and approximately registered with each other to
mark the spatial connectivity of the ducts, tumors, etc. Regions
of interest (ROI), such as ducts and tumors, were semi-automat-
ically extracted in the H&E stained tissue images and virtually
mapped onto their neighboring fluorescent-stained tissue im-
ages. The ROI in the fluorescent stained tissue specimens were
reacquired at much higher resolution for cell-nuclei segmenta-
tion and quantitation of genetic variation.

The image acquisition and analysis software system is de-
signed in three parts. The first part facilitates low-resolution
image acquisition, semi-automatic marking of ROI and, the ap-
proximate registration of the images to form a spatially coherent
structure of ducts, tumors, etc., [25]. The second part of the soft-
ware performs the automatic and accurate segmentation of the
cell-nuclei in large tissue images of fluorescent specimens. The
final part of the software records genetic heterogeneity within
the nuclei. In this paper, we describe the methodology used to
complete the second and final part of the analysis. The control
flow diagram of the analysis process is shown in Fig. 2.

A. Image Standardization

Standardization of the brightness properties of the micro-
graphs reduces the need to retune filter parameters when there
is a small change in the input image quality. Image standard-
ization is done by the selective stretching of the histogram and
is implemented as follows.

The histogram is smoothed to reduce noisy peaks. The “major
peaks” of the histogram are marked by searching the histogram
curve. A “peak” is defined as a point on the histogram curve that
is higher than the neighboring points and “major peaks” are the
peaks that are at least as tall as 1% of the height of the mode
point peak. Let and be the lowest and the highest
gray values that correspond to major peaks. For a unimodal his-
togram, and are the points where the histogram curve
falls below 1% of the height of the mode point while traversing
from mode point towards minimum and maximum gray-value
bins, respectively. The contrast of the pixels in the image having
gray values in the range -to- are stretched using the
relation

(1)

where
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Fig. 2. Flow diagram of a generalized segmentation process for histo-patho-
logical images.

Here, is the number of bits used to represent a pixel in
an image. This process modifies the intensity distribution in the
image such that the data tends to have a similar intensity distri-
bution and an approximately common mean brightness value.

The low-frequency brightness variation in the image caused
by camera vignetting, etc., was reduced by background-leveling
process. A background image was constructed by neighbor-
hood averaging until objects disappear into the background.
The background image was then subtracted from the contrast
stretched image and the result was rescaled to occupy the
complete gray-scale range.

B. Reaction-Diffusion Filtering

In histo-pathological images, the image pixel intensity gra-
dient representing the boundary of the cell nucleus is the major
feature facilitating accurate segmentation. When such features
are too weak for complete boundary marking which is often
the case in histological images, concavities in the overall ob-
ject shape where more than one cell-nucleus touch or appear to
overlap provide good indicators for a boundary search. A seg-
mentation process, preceded by techniques aimed at enhancing
these features would increase the efficiency of segmentation.
This is accomplished first by denoising the tissue image using
a reaction-diffusion filter and then by directional coherence en-
hancing filtering. Let us consider the image function

and be the intensity gradient magnitude
image where is the gradient operator and indicates the
image function at any given time “ .” Malladi and Ravve [26]

Fig. 3. Effect of reaction diffusion filtering at different “beta” values.

have proposed a following partial differential equation (PDE) as
a reaction-diffusion type filter for image denoising

(2)

The first term on the right-hand side contributes to the reac-
tion while the second term contributes to the nonlinear diffu-
sion. The parameter controls relative contribution of reaction
and diffusion terms. To determine the value of , we have ap-
plied the above reaction-diffusion filter on a seven representa-
tive data sets with the variable in the range of 25 -to-85 in
steps of 5 increments. Fig. 3 shows the result of reaction-dif-
fusion filtering for a fixed number of iterations with changing
values. At , all seven data-sets showed better segmen-
tation result and hence is considered as a default in the
present application. A descriptive mathematical treatment and
implementation details for filter represented by (2) can be seen
in [26] and [27].

C. Boundary Coherence Enhancement

The second step of pre-processing is to enhance the boundary
features of the nuclei. We have designed a directional coherence
enhancement technique for this purpose. Coherence enhance-
ment filtering has been implemented by different groups in the
context of PDEs for image processing [27], [28]. We have im-
plemented a real space directional coherence enhancement fil-
tering as follows.

1) Calculate image intensity gradient map using image gra-
dient operators.

2) At every pixel location in the gradient map, divide the
local 3 3 neighborhood into four major directions i.e.,
horizontal, vertical and two diagonal directions. Calculate
semi-Olympic average of the gradient magnitude in each
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Fig. 4. Boundary coherence enhancement and synthesis. (a) Gradient magni-
tude image. (b) After directional enhancement. (c) Boundary synthesized from
the gradient image.

direction within the 3 3 neighborhood. In semi-Olympic
averaging, we discard the maximum value before calcu-
lating the average. This averaging process reduces the in-
fluence of noisy gradient peaks in the neighborhood and
in an implicit way contributes inverse diffusion across the
boundary.

3) Calculate local direction of the boundary as the direction
in which the average gradient magnitude is maximum.

4) Replace the central pixel with the directional semi-
Olympic average intensity value.

In addition to smoothing along the structure direction, the
present implementation implicitly facilitates sharpening of the
gradient peaks at the boundary. Use of semi-Olympic averaging
reduces the probability of smoothing in an orthogonal direction
within the neighborhood of the boundary. Fig. 4(a) shows the
gradient magnitude in a small part of the tissue image. Fig. 4(b)
shows the result of sharpening the gradient magnitude image
by the above described process. The boundary segments of the
cell-nuclei are synthesized from coherence enhanced image. All
the pixels that are below the average gradient magnitude are dis-
carded. A 3 3 pixel neighborhood at every pixel in the image
is analyzed and only the three pixels with largest gradient mag-
nitude in the neighborhood is retained as representing boundary
segment. The synthesized boundary information is used as a
supporting feature for segmentation of the cell-nuclei that are
touching or overlapping one another. Fig. 4(c) shows the tissue
image where the boundary segments of the objects synthesized
from the coherence enhanced gradient map is superposed.

D. Binarization

There are several thresholding techniques, reported in the lit-
erature [29], which can be generally used as a direct method

for binarization. It is generally accepted that a single threshold
for a large image may not be suitable for accurate binariza-
tion. The first issue that must be addressed is how to deter-
mine different regions in the image and the second issue is the
calculation of corresponding threshold values for each region.
Here we propose a simple technique that automatically deter-
mines the number of regions in the image and calculates regional
thresholds.

We have implemented a multistep, adaptive region selection
method to solve this problem. In the first step, we create dif-
ferent regions by amplitude thresholding at a fraction of the
global threshold value followed by component
labeling. Here, is determined such that the “ ” is located
near a shoulder point of the histogram that is close to the mean
intensity “ ” of the image. The binary image is then labeled and
each labeled component is considered as a region for which in-
dividual threshold values have to be determined.

The second step of binarization is based on the assumption
that the individual regions have their brightness distributed in a
smaller gray-scale range and most of the pixels in the individual
regions belong to the objects. This second step consists of four
substeps as follows.

1) The mode point of the smoothed histogram from indi-
vidual regions is detected by scanning the histogram for
the highest peak.

2) The gray values corresponding to the two shoulder points
in the histogram are determined as the two points in the
histogram located on either side of the mode point and,
where the height of the peaks falls below 1% of the mode
point height. This gray-scale range defines the threshold
for the respective region.

3) Pixels whose gray-value is outside this range are converted
to background, i.e., set to black in the binary image.

4) Pixels that correspond to the boundary segments synthe-
sized from the coherence enhanced gradient map are con-
verted to background pixels for further isolating the closely
located binary structures.

The method is simple and effective in distinguishing different
regions in the tissue image and setting a proper threshold based
on the local region brightness distribution. Holes within the ob-
jects that appear due to intra cellular objects, etc., and that are
darker then the rest of the object, are filled by analyzing the neg-
ative of the binary image. Tiny detectable objects in the negative
image are considered as the holes in the positive image. Fig. 5
shows the result of multi-level thresholding on a small part of
the tissue image. The binary image is then labeled and morpho-
logically “opened” using a structuring element with an approx-
imately circular effective kernel.

E. Segmentation of Nuclei Clusters

This stage of analysis determines the success of the method-
ology for the high-throughput analysis of cancer tissue images.
A region-growing technique with automatic seed planting,
whose growing abilities are constrained by the object boundary,
shape, and the gray-scale features, is proposed for this purpose.
This method closely follows the generalized watershed algo-
rithm [30].
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Fig. 5. Result of multistage region-based thresholding. (a) Image of dense
tissue section. (b) After two-stage thresholding and hole-filling.

A distance map of the binary image is generated using
Borgefor’s distance-transforms [31]. This distance map pro-
vides a grey-scale representation of the binary tissue image
where the local distance maxima represent the center of an ob-
ject or the seed-points to start region growing. The grey-level of
the objects in the distance map decreases from the seed-points
towards the object boundary.

Let represent the distance value of pixels in the dis-
tance map. List the distance values in the map in a descending
order. Let, be the maximum distance in the distance map,

be the next maximum distance level and be
the minimum distance value in the distance map. The region
growing in the distance map is described below.

1) The groups of pixels having maximum distance in
the distance map are considered as initial set of seeds and
are labeled using the connected-component labeling algo-
rithm.

2) The region/seed growing is accomplished by merging the
pixels having distance value with the seed in its im-
mediate neighborhood.
Those groups of pixels with distance value but not
located in the immediate neighborhood of a seed are con-
sidered new seeds and are labeled accordingly. At the end
of this step all the pixels with distance value have a
unique label attached to them showing that they belong to
a seed region.

3) Recalculate as the maximum distance value of the
pixels in the distance map that are not labeled as seed re-
gions.

4) If , then steps 2 and 3 are repeated.
Fig. 6 diagrammatically describes the region-growing

process in a distance map. Two cell-nuclei of different sizes are
connected together in such a way that binarization will not be
able to segment them as shown in Fig. 6(a). Fig. 6(b) shows the
distance map of the binary image shown in Fig. 6(a). At the
start of the region growing, only “seed1” acts as a seed since
only the pixels of “seed1” have distance value . After a
few iterations of region growing, when the value is same
as the distance value of still unmarked “seed2,” there will be
two isolated groups of pixels with value and ready to
be merged with a seed. One such group is in the immediate
neighborhood of “seed1.” The other group has no seed in its
neighborhood. This later group of pixels would be considered as

Fig. 6. Diagrammatic representation of region-growing concept over a distance
map. (a) A binary image of a cluster of two objects. (b) The distance map of
the cluster of two objects. (c) After region growing from the two seeds (local
distance peak), the cluster of two objects is segmented.

Fig. 7. Result of segmentation. (a) Dense tissue image. (b) Boundary of the iso-
lated regions are overlaid on the original image. Inaccuracy in boundary marking
can be clearly observed.

a new seed “seed2” and the region-growing process continues
until all the object pixels are allotted a unique seed label. Fig. 7
shows the result of segmentation of tissue image by the above
described process. Fig. 7(a) is the original gray-scale image
while Fig. 7(b) shows overlaying of the boundary of isolated
regions on the original image.

The noisy artifacts in the image and improper structural
smoothing of the binary image might create noisy local
maxima in the distance map that causes fragmentation of the
cell-nuclei as shown in Fig. 7(b). It is necessary to recognize
the fragments and merge them to an appropriate cell-nucleus.
This is done in a few simple steps.

1) All the objects with relative size less than 0.5 are marked as
fragments. The relative size of the object is defined as the
ratio of the size of that object to the average size of objects
in the image. The size of the object is the total number of
pixels in the object.

2) The fragments are merged with a large object with which
they share the boundary.

3) If the fragment is connected to more than one object, then
it is merged with that object with which it shares larger
common boundary.

It is possible that a single object is fragmented into many tiny
segments and these segments are merged into different objects.
Some of the tiny fragments that are not connected to any large
objects and whose average grey level is very low are eliminated
from the segmented image. The resulting image is structurally
smoothed using a circular structuring element by a morpholog-
ical “opening” operation. Fig. 8(b) shows the result of merging
the fragments with connected larger objects.



2264 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 8, AUGUST 2006

Fig. 8. Result of merging fragmented nuclei and eliminating isolated frag-
ments. (a) Result of segmentation by region growing over a distance map is su-
perposed on the original gray scale image. (b) Result after heuristically merging
the fragments and structural smoothing by gray scale morphological closing.

If the objects can be generally categorized as convex shapes,
shape-filters can be incorporated to identify fragments. Shape-
based filters are effective in isolating non-nuclear artifacts or the
cells whose shape change significantly due to malignancy.

F. Shrink Wrapping

The accuracy of segmentation obtained by sequential com-
bination of filters depends on the accuracy of individual filter
output. For example, the shape of the segmented objects is gen-
erally influenced by the shape of the structuring elements used
for morphological smoothing, noise reduction, etc. Segmenta-
tion of clusters by region-growing using a distance-map relies
on the presence of a concavity in the binary image where two
or more objects touch one another. Thus the separation line ob-
tained by the segmentation need not correspond to the pixel lo-
cations with high local gradient magnitude. Fig. 7(b) shows how
inaccurate the segmented object shape can be when overlaid on
the original gray-scale image.

To regain accurate shape of the objects, we have imple-
mented an iterative process called “shrink-wrap” filtering. Here
we consider the segmented objects as partial signatures of the
cell-nuclei.

1) Label the objects in the segmented image.
2) The labeled objects are dilated into their immediate neigh-

borhood under the constraint that the dilated objects do not
touch one another.

3) The objects are shrunk along their boundary only if the
gray-elevel of the boundary pixels is below the average
gray-level of the dilated object. Object boundary shrinking
is an iterative process. The object shrinking continues till
there is no object boundary pixel whose gray-level is below
the average gray-level of the dilated object.

4) Steps 2 and 3 are repeated until the difference between the
size of the objects before and after an iteration of shrink-
wrap operation, becomes zero.

Fig. 9 shows the result of shrink-wrapping for improving the
accuracy of segmentation. Fig. 9(a) shows the boundary of the
objects prior to dilate and shrink-wrap and Fig. 9(b) shows the
boundary of the objects after shrink-wrapping.

Objects that are bloated beyond their actual boundary before
the start of the shrink-wrap process, are simply shrunk back to
their original shape and no major change in shape or size occurs

Fig. 9. Result of post-processing by shrink-wrapping. (a1) Dense tissue image
after segmentation by region growing. (b1) After post-processing: the boundary
contours of the segmented regions are over-laid on original image. (a2) Simpler
sparse tissue image after segmentation by region growing. (b2) After post-pro-
cessing: The boundary contours of the segmented regions are over-laid on orig-
inal image.

in the subsequent iterations. The advantage of this shrink-wrap-
ping process is that the shrinking takes place based on the in-
tensity characteristics of the individual cell nuclei. Thus, in ma-
lignant tissues individual nuclei that show different brightness
features are not unduly influenced by the property of the pixels
belonging to other cell nuclei.

III. ANALYSIS OF GENETIC HETEROGENEITY IN DCIS

By using fluorescence in situ hybridization (FISH), the
genome amplification within the cell nuclei can be marked as
fluorescent spots. Fig. 10 shows a FISH channel of a multi-
spectral tissue image. Relatively bright-spots are considered as
FISH signals. The tissue structures also make a ghost presence
due to bleed-through from one spectral channel to another.
Bleed-through is a common phenomenon in multispectral
images where, the brightness of pixels at one spectral channel
appears at the low intensity scale of other spectral channels
and is considered noise. A healthy cell is expected to show two
spots corresponding to the two normal copies a gene of interest.
The malignancy or the tumor growth is generally highlighted by
the amplification/deletion of the gene numbers, i.e., variation
in the number of spots within the nucleus depicting the gene of
interest. The level of magnification of the genome in cell-nuclei
is considered as a way to determine genetic heterogeneity
between different parts of the tumor or cancerous organ. For
an accurate quantitative analysis, 3-D imaging by confocal
microscope is essential [32], [33]. However, light scattering
and hybridization efficiency limits the thickness of the sections
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Fig. 10. Result of processing FISH signal channel. (a) Original image of the
FISH signal channel (Her2 gene). The bright spots are the FISH signals and the
rest is a bleed-through from the tissue image channel. (b) Reconstructed back-
ground image representing bleed-through. (c) After bleed-through reduction and
rescaling.

that can be analyzed using confocal microscopy to less than
40 m. This is very small compared the usual thickness of our
samples (3–5 mm). This thickness is required to be able to
preserve meaningful connected tissue structures such as ducts,
etc., to study the DCIS of a breast cancer tissue block. Even
if light penetration and sample preparation allowed staining
and imaging of such thick blocks, the amount of data produced
would be too large. By studying only the amplified genomes
instead of deleted ones as a marker of cancerous cells, one can
reduce the inaccuracy of the quantitative analysis due to 2-D
slicing of the tissue block. We propose to distinguish cancerous
from normal cells using the number of copies of the Her2 gene
shown as bright spots in the FISH signal image [Fig. 10(a)]. The
centromere FISH spots show no amplification in malignancy
and are used as a control to study Her2 gene amplification. In
summary, our argument favoring a standard 2-D fluorescent
microscope stems from factors such as the amount of data to be
analyzed, complexity of the data and the reduced necessity of
multidimensional imaging due to the analysis of large number
of cell nuclei.

To identify genetically aberrant cells one might count the
number of FISH signals (fluorescent spots) present in the cell
nuclei or integrate the fluorescence intensity in the area of the
nucleus for the FISH signal channel. A simple algorithm for de-
tecting the FISH signal spots is as follows.

1) Construct a background image of the FISH channel by in-
verse top-hat filtering. The difference between total inten-
sity of the pixels in the rim of the top-hat and the kernel
of the top-hat filter is calculated. If this difference is above
a certain threshold, then the intensity of the pixels in the
kernel is replaced by the average intensity of the pixels

of the rim of the top-hat filter. We have used a “7 7”
top-hat filter with “3 3” kernel size located at the center.
Fig. 10(b) shows the result of constructing background
image of the FISH channel by inverse top-hat filtering.

2) Subtract the background image from the FISH image, con-
vert all negative pixel values to zero and rescale the image.
Fig. 10(c) shows the result of background subtraction and
rescaling to enhance the FISH signal spots.

3) Threshold the FISH image at an appropriate gray level. The
default threshold is the average brightness of the nonzero
pixels.

4) Resolve the closely located FISH spots, if any, by fitting a
FISH signal feature profile to local intensity peaks in the
FISH spots [33]. A FISH signal feature profile consists of
the size of an ideal FISH spot and the intensity distribution
around the central peak, which is generally Gaussian.

5) Label and count the FISH spots in each cell-nucleus.
A similar study can also be done by calculating the integrated

brightness of the pixels per cell-nucleus in the FISH channel and
conducting a comparative analysis to determine genetic varia-
tion. The nonlinear brightness variation due to bleed-through
from the other spectral channels decreases the efficiency of mea-
suring genetic variation as an integral brightness of the FISH
channel pixels within a cell-nucleus.

We have consistently observed gene amplification in the cells
of milk-ducts, etc., even quite far from the tumors. The am-
plification of the number of FISH spots per cell-nuclei across
the tissue block within a continuous structure such as ducts
have reinforced the biological observation that the genetic het-
erogeneity exists far from the primary tumor prior to tumor
invasion.

IV. RESULTS AND DISCUSSION

To evaluate the efficiency of the algorithm we used three
tissue blocks taken from two different DCIS cases. Physical sec-
tioning of the tissue block into several 5- m-thick tissue sec-
tions resulted in an image stack of K images for each
of the 140 slides, with an average nuclei density of 20 000 nu-
clei/tissue-block. Our target was to achieve more than 85% of
the cell-nuclei segmentation for large images that contain more
than 2000 cell nuclei and to accomplish this task even when the
quality of the image is relatively poor. The integrated method
described in this paper has satisfied the target efficiency irre-
spective of the size of the image, and the number of objects to be
segmented. As shown in the Fig. 10(b), even when the cell-nu-
clei are compactly arranged, the proposed method can clearly
segment cell-nuclei and mark a boundary with good accuracy.
To prove the general applicability of the methodology, we have
tested the algorithms on 2-D images obtained from confocal mi-
croscopy are the cells were dense and compactly arranged. More
than 98% of the cells are segmented correctly when the tissue
images of the confocal image quality are used.

Table I shows the result of segmentation of cell-nuclei in a few
representative slides for two cases of DCIS. In some cases, the
false positives have gone beyond 10% of the segmented nuclei.
A false positive is an object that has been segmented and rec-
ognized as a cell-nucleus by the algorithm while it is discarded
as an artifact by an expert. Such false positives exist in some of
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TABLE I
ANALYSIS OF EFFICIENCY OF IMAGE SEGMENTATION. THE TABLE LISTS A

FEW RANDOMLY SELECTED TISSUE IMAGES, TOTAL NUMBER OF CELLS

COUNTED MANUALLY IN THOSE TISSUE IMAGES, NUMBER OF CELL-NUCLEI

SEGMENTED BY THE SOFTWARE, AND THE NUMBER OF FALSE POSITIVES

IN THE SEGMENTATION RESULT

the images due to the segmentation of brightness saturated cell
nuclei and incompletely represented cell nuclei that occur at the
border of the image. These are counted as cell nuclei by the soft-
ware while the human expert has removed them from the nuclei
category.

All the image analysis steps were completed using a fixed set
of parameters, unchanged from experiment to experiment and
case to case. This make us believe that the standardization of the
intensity features of the tissue images followed by adaptive pre-
processing steps prior to segmentation has successfully proved
that the tuning parameters need not be changed every time new
data is analyzed.

The importance of accuracy of delineating nuclear boundary
depends on the application. In cases such as cell counting, it
is not necessary to have an accurate boundary or shape etc., so
long as one would count the same number of cell-nuclei and
accurately recognize a counted nucleus. It is important to have
accurate shape information for classification of cells of different
tissues, to distinguish healthy cell-nuclei from malignant ones,
to quantify genetic changes in the nuclei, etc. There are several
instances where FISH signals are located very close to the nuclei
boundary. If the boundary is not precisely drawn, then there is a
chance that such a signal will be discounted as outside the nuclei
or as belong to the neighboring nuclei that is closely located.

The accuracy of segmentation can be measured as a per-
centage of symmetric difference in the area of the cell-nuclei
given by automatic segmentation and manual segmentation. If
“ ” is the area of a cell nucleus segmented by an automatic
method, i.e., set of all pixels in the nucleus segmented by
automatic method and “ ” is the area of the same nucleus
segmented manually then the percentage of symmetric dif-
ference is given by ,
where “ ” is the set union operator, “ ” is the set intersection
operator, and “ ” is the set difference operator.

TABLE II
COMPARATIVE ANALYSIS OF CORRECTLY SEGMENTED CELL-NUCLEI BY THREE

DIFFERENT SEGMENTATION METHODS IN SEVEN REPRESENTATIVE IMAGES.
MULTILEVEL THRESHOLDING IS SIMILAR TO THE BINARIZATION DESCRIBED IN

THIS PAPER. WATERSHED TECHNIQUE IS IMPLEMENTED AS DESCRIBED IN [30]

TABLE III
FISH SIGNAL ANALYSIS: SHOWS THE VARIATION IN FISH SIGNAL

SPOTS/NUCLEUS (AS A STANDARD DEVIATION OF FISH SPOTS/NUCLEUS) IN

CONTINUOUS SPATIAL STRUCTURES OF TWO DCIS CASES. EACH STRUCTURE

IS AN ISOLATED REGION OF INTEREST IN 3-D. THOUGH THE NUMBER OF

NUCLEI SEGMENTED FROM THESE STRUCTURES, ARE GENERALLY MORE, WE

HAVE CONSIDERED ONLY THOSE NUCLEI SHOWING GENE AMPLIFICATION

AND THE COUNT OF SUCH NUCLEI IS GIVEN IN COLUMN2

One-hundred cell nuclei were randomly selected from dif-
ferent images and their boundaries manually delineated. The
percentage symmetric difference in the area of each of the cell nu-
clei when segmented manually and automatically was calculated.
We have found that such a percentage difference never exceeds
7%, which is an acceptable error limit. There is no generally
accepted segmentation technique for delineating cell nuclei and
hence it is difficult to compare the proposedmethodology to other
state-of-the-art techniques. Table II lists the number of correctly
segmented nuclei in a few specimen images when multi-level
thresholding and watershed algorithms, were applied. Based on
the results in Table II, it can be argued that the proposed method
performs much better compared to the other two methods.

Genetic heterogeneity as a function of the number of FISH
signal spots/nucleus was calculated based on those cell-nuclei
that show gene amplification. Table III shows the variation of
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FISH spots/nucleus in cells from different structures of interest
in two DCIS cases. The existence of genetic heterogeneity in
the cells of the tissue structures that are relatively far from the
primary tumor confirms the earlier observation by Holland et al.
[1] and Lagois et al.[2]. The high standard deviation of the spot
count need not indicate higher genetic heterogeneity. It gener-
ally indicates that the amplification of the number of copies of
the gene of interest is not uniform among the cells of the tissue.

Most of the functions in the software are written in IDL. C was
used for low-level processing of images. Software is tested on a
512-Mb RAM, 1GHz speed, Win2000 PC. For an image of ap-
proximately 5 5 K size, it takes approximately 15 min to com-
plete the segmentation and analysis of fluorescent signatures.
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